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However, the signal-to-noise ratio can be improved 
by rejecting intensity pairs if (p+q) is below some 
limit. Rejection of pairs of observations on this basis 
does not bias the expected distribution for S(H). This 
can be~ verified by evaluating the integrals (6) and 
(13) within these new limits. The S(H) take the same 
form as before, multiplied by a scale factor corre- 
sponding to the fraction of the joint probability distri- 
bution within the new limits. 

Errors in the estimation of a may also be intro- 
duced if individual reflections of low intensity are 
rejected (as may occur with an I/tr cutoff). When a 
is small, p may be very small while q is large, or vice 
versa. Omission of reflection pairs of this type will 
result in an overestimation of a. For this reason, an 
I/tr cutoff should not be imposed on data prior to 
determination of the twinning fraction. 

As previously mentioned, we have assumed that 
the true untwinned intensities of two reflections 
related by the twinning operation are statistically 
independent. In crystals where a non-crystallographic 
symmetry operation nearly coincides with the twin- 
ning operation (Rees & Lipscomb, 1980), this 
assumption is not valid. Application of the statistics 
presented here to such a case leads to an overestima- 
tion of the twinning fraction. 

Concluding remarks 

The statistics of a new parameter, H, take a simple 
form for intensity data from a hemihedrally twinned 
specimen, and are sensitive to the twinning fraction, 

a. The observed statistics for H may be compared 
with the predicted statistics, allowing one to obtain 
an accurate value for the twinning fraction. Rejection 
of weak pairs of observations on the basis of the sum 
of the twin-related intensities allows a more accurate 
determination of a, without introducing bias. 

In addition to the application to twinning, H can 
be defined in terms of the intensities of equivalent 
reflections from two different data sets. The values of 
([ HI) and ((H2)) could provide measures of similarity 
between data sets, in a fashion similar to the crystallo- 
graphic R factor. The expected values of these terms 
for unrelated data sets are given by (8a), (8b), (14a) 
and (14b) with a =0.  These terms differ from the R 
factor in that they are not dominated by the reflections 
of highest intensity. Instead, all reflections contribute 
similarly to the average. 

This work was supported in part by NIH training 
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Abstract 

A new type of information on the distribution of 
electron density in crystals of biological macro- 
molecules is proposed. This is a quasihistogram of 
the image of the function of electron density dis- 
tribution at a finite resolution. It is shown how this 
information should be used to restore the values of 
low-angle structure factors whose amplitudes have 
not been measured during X-ray experiments. 

0108-7673/88/020144-07503.00 

Introduction 

X-ray analysis of the spatial organization of 
macromolecules implies searching for a function p(r) 
which is the sum of truncated Fourier series 

p ( r ) =  V -~ Y'. F(s) e x p i [ ~ ( s ) - 2 r r ( s , r ) ] .  (1) 
Isl -<. l/drain 

We shall call this function the 'image', or more 
precisely 'image of the function of the electron density 
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distr ibution at a resolution dmin'. In contrast to the 
' true'  electron density distribaation corresponding to 
the infinite series in (1), the properties of  image p(r) 
may strongly depend  on the resolution that is pro- 
duced. For example,  the sum (1) may take negative 
values, several atoms or atomic groups may  not be 
separated and so on. To obtain an accurate image, 
we should use exact values of  all the structure factors 
needed to calculate (1). In practice there is always 
something that prevents this, either due to unknown 
phases or even to unknown  phases and ampl i tudes  
for some of  the structure factors. This lack of  
necessary informat ion  may produce maps  with practi- 
cally indiscernible  molecule  configurations. An 
example  of  such a map  is shown in Fig. l (b )  where 
about 17% of  terms are excluded from the sum (1). 

If  we know ampl i tudes  and phases only for some 
of the structure factors needed we can set the 
unknown remainder  arbitrary to obtain 'a l lowable '  
images, those which do not contradict the informat ion 
we possess on structure factors. Let L be a set of  all 

these al lowable images. There are several approaches  
to determining the unknown structure factors, i.e. to 
choosing an image in the class L. The most common  
way is to make the unknown factors zero so that the 
sum (1) does not include them at all (Fig. lb ) .  A 
more accurate choice requires addit ional  restrictions 
on the funct ion o(r) which would allow for its specific 
properties. 

This paper  is an at tempt to account accurately for 
the specificity of  the range of  values of images p(r)  
corresponding to the distr ibutions of  electron 
densities in macromolecu la r  crystals. Some examples  
of  the images obtained are shown in Figs. l (c )  and 
(d). 

1. Histogram corresponding to image p(r) as a kind 
of additional information on the object 

Assume p(r)  is calculated at points of  a unit-cell  grid 
and {pj} are its values at these points. Let us construct 
a histogram for these values. For this purpose we 

(a) 

(c) 

(b) 

6 a  

(d) 

Fig. 1. (a) Section z = 12/48 of image p(r) at resolution 4 ~ calculated from the subtilisin model; (b) the same section for the sum 
(1) with 17% of terms excluded; (c) restored image without account of the information on the amplitudes of unknown structure 
factors; (d) restored image with account of the information on the amplitudes of unknown structure factors. The lower contour level 
in all maps isolates 40% of unit-cell volume. 
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subdivide the interval (f lmin,  Pmax) into K equal parts 
(bins) and determine how frequent are occurrences 
of & in each of the bins: 

rk = nk / ~  hi, k = 1 , . . . ,  K. 

Here nk is the number of & in the bin k, which is a 
number of such & that 

Pmin + ( k  - 1 ) Pmax -- Pmin < Pmax -- Pmin 
K - pj "< Pmin + k K 

Analysis of histograms for images p (r) correspond- 
ing to proteins with known structures suggests that 
they have characteristic features distinguishing them 
from histograms of randomly chosen functions. This 
fact is illustrated by Fig. 2 showing histograms for 
the following three functions of form ( 1 ) at drni, = 4 ~ :  

p~(r) is determined by (1), where F(s) exp[i¢(s)] 
are exact  s t ructure  factors  f ound  f rom an 
atomic model of subtilisin; 

p~p(r) F(s) in (1) are exact values from the sub- 
tilisin model and q~(s) are determined by a 
randomizer; 

p~(r) about 17% of reflections are eliminated 
from the synthesis p~(r). 

Histograms for exact images pe(r) may have some 
dissimilarities for different proteins or different 
resolutions, so that determination of the 's tandard'  
histogram {r °} for a still unknown object is a separate 
problem. In this paper we want to confine ourselves 
to an important particular case when the standard 
histogram is known. This is the case when a 
homologous protein with known structure exists. Its 
histogram may serve as the 'standard'.  

Assume now that we know this standard histogram, 
{r°}, for the object we are studying. Let us use this 
information to choose a function in the above class 
L. Let p~(r) be a function of this class. We can 

\ 

,), //,"%, 

Fig. 2. Histograms for functions p(r)(  ), psp(r) ( x  x x ) ,  
or(r)( . . . .  ). 

calculate the histogram {r~,} for this function and 
compare it with the standard. 

K 
Q(pC) K - '  ~ (r~k - o,2, o = rk) / rk. 

k = l  

Let us now formulate the criterion for choosing the 
function p(r) in the class L as follows: 

Criterion 1. We seek a function p(r) of the class L 
for which the value Q(p) is minimal. 

This means that the unknown structure factors are 
allowed to take any (not necessarily zero) values, but 
it is required that the histogram of p(r) should be as 
close to the standard as possible. 

The result of application of this type of criterion 
is shown in Figs. 1(c) and (d). 

2. Computational statement of the problem. 
Quasihistograms 

2.1. General formulation of  the problem 

Assume that for a set of reflections Sd we know 
amplitudes F°(s) and phases ~°(s) of structure fac- 
tors and that for a set of reflections S,, we do not 
know either phases or amplitudes and phases. Then, 
to choose a concrete image in the class L, we need 
to determine the values 

FC(s)exp [@C(s)] for s~ S,. 

Following the above considerations, we can try to 
find them so as to make minimal the function Q where 
{r~} are the values prescribed and {r~} are calculated 
as follows: 

(a) for a unit-cell grid we calculate the values of 
pC(r) 

c p~ = pC(rj) 

= V-l{ y, F°(s)exp i [~° ( s ) -2 r r ( s ,  rj)] 
SC S d 

+ Y, FC(s)exp i[~C(s)-27r(s,  rj)]}; (2) 
SE S u 

(b) we determine how frequent are occurrences of 
p~ in the given bins: 

N 
rk N - ' Y ,  o ,  c = , t  ( o ,  - t k ) ,  (3) 

j = l  

where N is the total number of grid points, t k is the 
middle of the kth bin [tk = Pmi,+ (k -0"5)A] ,  A is the 
length of bin [A = (Pmax-Pmin)/K], and 

/~0(t) = {10 if Itl-<A/2 
i f l t l < a / 2 .  

Minimization of such a function Q is a hard compu- 
tational problem. This stems from the fact that Q is 
a step function such that small variations in the struc- 
ture factors do not, generally speaking, allow pj to 
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'pass over' from one bin into another. Stated 
differently, frequencies rk remain unchanged. Hence, 
no gradient methods can be used to minimize Q (the 
gradient of Q is zero for almost all values of vari- 
ables). To cope with this task we shall reformulate 
the problem, introducing quasifrequencies and quasi- 
histograms. 

2.2. Quasifrequencies and quasihistograms 

'Bad' properties of Q result from the fact that the 
frequencies rk are calculated in (3) using the step 
function tx°(t). 

Definition. Let /x(t) be an arbitrary function such 
that /z(t) _ 0 and ~_~/z(t) dt = A. By quasifrequen- 
cies we mean the values 

N 

"Tk = N- '  Z tX(p~--tk) (4) 
j = l  

and by a quasihistogram the set of quasifrequencies 
(~k}. 

We introduce quasifrequencies to indicate that the 
contribution of a point pj may actually be distributed 
over some bins, relating quasifrequencies "~k not only 
to the values p~ in a given bin but also to the values 
in the neighbouring bins. This dependence may be 
made smooth, which enables gradient methods to be 
used in order to minimize the function 

K 
0 K-I  Z ^c -0",2.-,0 = (Tk-- (5) 7"k) / Tk. 

k = l  

Here .~o are the standard quasifrequencies which 
in our case are found from image p(r) for a 
homologous protein and "~, are given by (4) and (2). 

Now the problem of restoration of image p(r) from 
an incomplete set of structure factors can be formu- 
lated as follows. 

Problem 1. We seek a function Popt(r) of the class L 
for which the value t~(popt) is minimal, i.e. the quasi- 
frequencies are closest to the standard. 

In this paper we shall use the simplest function 
/x(t) of the following form: 

~(t)=(o(1//32za)l t l+ 1//3 for Itl </3A 
for Itl-->/3A. (6) 

2.3. Treatment of noncentrosymmetric ( ncs ) reflections 

If the amplitude of a structure factor is unknown, 
this can be presented in the general form as 

F~(s)exp [icp~(S)]=fR(S)+ if1 (S). 

When solving Problem 1, we should find two indepen- 
dent free parameters for this structure factor, fR and 
f/. It is natural to take zeros as the initial values of 
these variables in order that the structure factor can 
be 'grown out'  from zero. 

If the amplitude of a structure factor is known and 
equals F°(s) ,  this can be approached in the two 
following ways. The first is to present the structure 
factor in the general form as 

FC(s)exp [i~0~(s)] = F°(s)exp [iq~(s)] 

so that only parameter q~ is needed to solve Problem 
1. This approach requires a choice of the initial values 
of the phase ~o. 

The second method consists of describing the struc- 
ture factor as before by two independent parameters 
fR and f;, but a penalty must be added to this criterion 
for the deviation of the amplitude from the prescribed 
value. An example of such a penalty is 

(FC-FO) 2. 

In this case the natural starting values of fR and ft  
are zero. 

Mixed tactics may be used so that for each such 
factor two parameters, fR and f~, should be varied in 
order to use the phases obtained as starting values in 
minimizing the function (5) with fixed amplitudes. 
But here a definite accuracy is required (see Appen- 
dix). In §3 we give a comparison of the two 
approaches. 

2.4. Treatment of centrosymmetric ( cs) reflections 

For cs reflections the phase may only assume one 
of two values distinguished by 7r. If neither amplitude 
nor phase of such a structure factor is known, it can 
be presented in the general form as 

FC(s) exp [ iq~C(s)] = / (s ) [cos  ¢p*(s)+ i sin ¢p*(s)]. 

Here ¢p*(s) is one of two phase values allowed for 
the given reflection and /(s) is an arbitrary (positive 
or negative) real number. In this way, a cs reflection 
with unknown amplitude can be described by a single 
parameter l with zero as the natural starting value. 

If for a cs reflection the amplitude is known and 
equals F°(s) ,  the reflection is described in the general 
form by one variable to(s) either +1 or -1  so that 

FC(s)exp [ iq~C(s)] 

= to(s)F°(s)[cos ~o*(s) + i sin ~o*(s)]. 

If the variables are discrete, the problem of 
minimization becomes more complicated. To avoid 
the difficulties that may arise, cs reflections should 
be described as before by the real variable l(s), but 
a penalty must be added to the criterion minimized 
for the deviation of l from the allowable values. It 
may be of the form 

[ I / ( s ) l -  1] 2. (7) 

3. Testing 

The test object was an atomic model of subtilisin in 
a 73 x 64 x 48/~, unit cell in space group P212,21. The 
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Test 1 
Test 2 

Test 3 
Test 4 

Table 1. Results of  tests on subtilisin 

M e a n  phase  
e r ror  (°) T e r m s  with 

M i n i m i z a t i o n  (182 ncs  c h a n g e d  s igns  

runs  0start Ofinish ref lec t ions)  (170 cs ref lect ions)  R* 

15 0-7 x 10 -s 0-5 x 10 -7 7 I 0-06 
10 0"3 x 10 -2 0.4x 10 -5 37 19 0-46 
20 0-3 × 10 -2 0"5 × 10 -6 36 19 0.46 

5 0.8 x 10 -5 0.6 × 10 -6 33 19 0"00 
33 0.4x 10 -2 0.9x 10 -5 33 21 0.02 

* R = T.IF c -  F°I/Y.I U I ,  the sum includes only those reflections for which the amplitude can be changed by minimization of 0. 

centre of mass was chosen so that molecules did not 
overlap one another. Atomic coordinates were used 
to calculate the values of structure factors 
F°(s)exp [i~°(s)], which were regarded as exact in 
further tests. About 17% of the structure factors, that 
is 352 out of 2104, were declared unknown (set S,), 
and we attempted to determine them by minimizing 
(5). 

In order to obtain the "standard' quasihistogram, 
we calculated structure factors corresponding to a 
protein molecule with the orientation modified rela- 
tive to the starting one. These structure factors were 
used to determine the Fourier synthesis needed to 
find quasifrequencies (.~o) which were further used 
to calculate the function (5). We subdivided an inter- 
val (-0.5,  1.5) into 30 bins and applied the function 
iz(t) of form (6) with fl --5. This method of calculat- 
ing the quasihistogram simulated the corresponding 
calculation for a homologous protein. 

For such a 'standard' quasihistogram, structure 
factors F°(s)exp [i~°(s)] no longer correspond to the 
exact minimum of (5). Therefore, we checked in the 
first test what the deviation of structure factors deter- 
mined as the solution to Problem 1 from their accurate 
values might be. We performed 15 runs of steepest 
descent using a special program. Minimization was 
made by varying the parameters fR(S) and f/(s) for 
ncs reflections, and l(s) for cs reflections starting with 
the accurate values of these parameters. The results 
are listed in Table 1. 

In the second test we attempted to restore structure 
factors from the set Su without amplitudes or phases 
predetermined. As in the first test we varied the pa- 
rameters fR (S), fl (S) and l(s). The starting values were 
zero (Fig. l b). The results are listed in Table 1, one 
of the sections of the synthesis with the structure 
factors restored is shown in Fig. l(c). 

In the third and fourth tests it was assumed that 
for s~ S~ only phase values are unknown but struc- 
ture-factor amplitudes are known and equal F°(s). 
In the third test the starting values for the phases of 
ncs reflections were the results of the second test 
(minimization without account of the amplitudes). 
For cs reflections we took the terms determined in 
the second test; these structure factors were fixed 
during minimization. Only the parameters ~(s) for 

ncs structure factors were varied. The result is shown 
in Fig. l (d) .  

In the fourth test the starting-phase values were 
generated by a randomizer. The parameters ¢(s) for 
ncs reflections and the parameters l(s) for cs reflec- 
tions were varied. The starting values of l(s) were 
zero. Penalty functions of type (7) were used to attach 
the values of cs structure-factor amplitudes to the 
prescribed ones. 

The results of the third and fourth tests were com- 
pared. The mean phase discrepancy for ncs reflections 
was 28 ° and for cs reflections 18 terms reversed sign. 

4. Estimation of the accuracy of isolating the regions 
from the images deformed 

The data listed in Table 1 give a formal estimate for 
the accuracy of the image 'restored'. In actuality, the 
quality of image p(r) depends on the informational 
'content' we are able to elicit from the object. Electron 
density images p(r) obtained in some way are used 
at different stages in the structure determination to 
recognize the location of the molecule, the path of 
the polypeptide chain, sites of side groups etc. In all 
these cases we proceed by isolating a region in the 
unit cell of the form 

.Q~ = {r: p(r) -> 4), 

which is composed of points r, where p(r)-> 4, and 
is characterized by a certain value of level 4. Hence, 
the quality of the approximate image pC(r) depends 
directly on how accurately regions ~ corresponding 
to the exact image p(r) can be restored by means of 
the function pC(r). We introduce a criterion charac- 
terizing the accuracy of isolating the regions /2° as 
follows. 

Let p(r) be the accurate image (1) and pC(r) be 
some approximation of it. For a value of t ~ (0, 1) we 
find the critical values 4(t)  and at( t )  such that the 
regions 

~ ( t )  = {r: p(r)--> 4(t)} 

and 

~ c , ~  = {r: pC(r) >- 4c( t ) }  

have identical volumes equal to tV, where V is the 
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volume of the unit cell. We can then estimate the 
accuracy of coincidence of the regions O,, and O~ 
by determining the volume of an area composed of 
points belonging to g2~ and not to J'2 ~. Let this volume 
be denoted M(t). It is clear that the smaller is M(t), 
the more J'2,~ and .(2 c ~ overlap. 

Now let us normalize M(t) as follows. Assume 
that the choice of the region .(2 of volume tV is quite 
random. Then an 'average' region g2,~(,) will not con- 
tain a volume ( 1 -  t)tV, which is the degree of non- 
coincidence between the regions O and 12,~,). So the 
relative error when isolating the region g2,,~,) by the 
function pC(r) is determined to be 

r e ( t ) :  M(t)/[(1-t)tV]. 

Curve C illustrates a synthesis which was calcu- 
lated using true structure factors for set Sd and ran- 
dom phases and true amplitudes for S,. It can be 
seen that this 'postdetermination' of unknown struc- 
ture factors gives worse results than their simple 
removal from the synthesis (curve B). 

Curves D, E and F represent the accuracy of 
isolating the regions 12~(,) with the aid of images 
obtained in the second, third and fourth tests, respec- 
tively. Here we are faced with real progress. 

If we compare curves E and F, we can see that 
although the formal errors of phase determinations 
in the third and the second tests are identical (see 
Table 1), the accuracy of isolating the regions /-2,,(,) 
is higher when the technique of the third test is used. 

In this way, the value m(t) indicates how accurate is 
the region .O~,) restored by means of pC(r) compared 
with the one for which the set of points was chosen 
randomly. 

Fig. 3 shows the accuracy of isolating the regions 
O~(,) with the aid of different images. Curve A rep- 
resents the accuracy of region isolation by means of 
image p~p(r) obtained from accurate amplitudes and 
random phases. It is seen in Fig. 3 that this synthesis 
contains almost no information on the object. Curve 
B represents the isolation accuracy for image pr(r) 
obtained from an incomplete set of reflections. It can 
be seen that this synthesis is good enough to repro- 
duce the region of higher densities, which is 10-20% 
of the grid points, but it is not quite sufficient to 
characterize broader areas. This circumstance was 
used by Bukvetskaya, Shishova, Andrianov & 
Simonov (1977) to develop a method for phase 
refinement based on the analysis of regions corre- 
sponding to maximal values of electron densities. 

m 

1 ~ , - - _  j A 

C 

~ / o  E 
Fig. 3. Relative accuracy m(t) of isolating the regions Y2,,(t ) by 

means of different functions (see text for explanation). 

5. Discussion 

The attempt to improve electron density maps using 
information on the range of values of the function 
p(r) is not new. There are various methods for restrict- 
ing p ( r ) - 0  (see, for example, Qurashi, 1953; Sirota 
& Simonov, 1970; de Rango, Tsoucaris & Zelwer, 
1969; Davies & Rollett, 1976; Navaza, Castellano & 
Tsoucaris, 1983). Attempts were made (Vainstein & 
Khachaturyan, 1977) to restrict the range of p(r) to 
two values (which under normalization are 0 or 1). 
However, as can be seen from the histogram for the 
function p(r) in Fig. 2, the condition p ( r ) - 0  may 
only be approximately satisfied for mean resolution. 
There are points at which the function pe(r) of the 
form (1) is negative even if the corresponding ampli- 
tudes and phases are determined absolutely accu- 
rately. The method proposed in this paper accounts 
more correctly for particular properties of the range 
of functions (1) relating to molecules. For example, 
it does not require that the function p(r) should be 
nonnegative, it simply limits the volume of the region 
of negative values and the range of possible values. 
The fact that there is a large area occupied by the 
solvent is reflected in the histogram by a large peak 
near zero. The presence of a protein globule is repro- 
duced by higher frequencies corresponding to large 
values of p compared with those appearing when the 
function psp(r) with randomly chosen phases is 
analysed. 

It remains to give a short mathematical interpreta- 
tion of our approach. Conditions of types p(r) -> 0 or 
p(r) = {0 or 1} determine only those values which the 
function p(r) is allowed to take. Use of the histogram 
{~'k} means that we additionally attempt to take 
account of the measure (Leberg function) generated 
by p(r) for its range of values. 

The author is grateful to O. M. Liginchenko for 
her help in preparing the manuscript. 
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APPENDIX 
Replacement of the calculated structure factor 

amplitude by the experimental one 

When for a reflection the exact value of the structure 
factor amplitude F ° is known and there is a 'calcu- 
lated' value of the structure factor F c exp (i~p~), com- 
mon practice is to use the 'mixed' value of the struc- 
ture factor F ° exp (i~o c) for further calculation. 

It can be seen that the value F ° exp (i~o ¢) is more 
exact than F ~ exp (i~o ¢) only when 

F C / F  ° > 1, or when F ~ / F  ° < 1 - 4  sin 2 (A~o/2). 

Here A~o is the error in the calculation of phase ~0 C. 
In particular, if A~o > rr/3, then for all F" < F ° the 

value F ° exp (iq~ ~) is less exact than F ~ exp (i~oc). 

This is why we must be careful in ascribing to the 
observed amplitude the calculated phase when F c is 
smaller than F °. 
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Abstract 

The shapes of the wide-angle X-ray reflexion profiles 
produced by materials comprising layer-type 
molecules, such as carbon fibres and pyrolytic 
graphites, are affected by distortions, sizes and prefer- 
ential orientation of the crystallites. In the present 
study, the diffraction intensity distribution of layer- 
type materials has been deduced theoretically as a 
function of structural parameters and measuring 
direction. The reflexion profiles of carbon fibres have 
been simulated to investigate the effects of structural 
parameters on the modulation of the diffraction 
pattern. 

I. Introduction 

The crystallites in non-graphitic carbons such as car- 
bon fibres and pyrolytic graphites are parallel stacks 
of individual graphite layers with no regularity of 
packing in mutual translations parallel to the layer. 
The wide-angle X-ray diffraction patterns of layer- 
type materials of this kind show 001 and hk reflexions, 
but do not exhibit general hkl reflexions. The hk 
reflexion profiles resulting from a random orientation 
of randomly stacked layers of finite size were first 
analysed by Warren (1941). 
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The hk reflexions are strongly asymmetric, and this 
peculiar peak shape is affected by preferential 
orientation of the crystallites. Guentert & Cvikevich 
(1964) have given a method to convert the hk reflexion 
profiles caused by randomly stacked layers of infinite 
size with preferential orientation into those with ran- 
dom orientation. Ruland & Tompa (1968, 1972) have 
expressed the hk reflexion profiles of randomly 
stacked layers as a function of the layer size and the 
degree of preferential orientation. 

In certain layer-type carbons, there exists some 
degree of regularity in mutual translations of neigh- 
bouring layers (Franklin, 1951; Ruland, 1965; Fischer 
& Ruland, 1980). With increasing regularity, the 
asymmetric hk reflexions turn into the symmetric hkl 
reflexions (Houska & Warren, 1954). Ruland (1965) 
has evaluated the degree of regularity for powder 
samples of graphitic carbons. 

This study analyses the wide-angle X-ray diffrac- 
tion by finite-size crystallites with preferential orienta- 
tion, comprising layer-type molecules stacked with 
Hosemann distortions of the second kind. The results 
of this study form the basis of trial-and-error evalu- 
ation of structural parameters. In the following dis- 
cussion, the structure of layer-type materials is 
expressed by the electron density distribution. Then, 
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